വര്‍ണ്ണ ചിത്രങ്ങളില്‍ നിന്നും പ്രസക്ത ഭാഗങ്ങള്‍ വേര്‍തിരിച്ചെടുക്കാനുള്ള ഒരു സെഗ്മെന്റേഷൻ സമ്പ്രദായം

നിയാസ് എസ്, രേഷ്മ പി, ഡോ . സാബു എം തമ്പി

സംഗ്രഹിക്കുക


വളരെയധികം പ്രചാരം നേടിയ ഇമേജ് പ്രോസസ്സിംഗ് മേഖലയിൽ സെഗ്മെന്റേഷനുള്ള പങ്ക് വളരെ നിർണായകമാണ്. വിവിധ തരം വസ്തുക്കളെ കമ്പ്യൂട്ടറിന്റെ സഹായത്തോടെ തിരിച്ചറിയുന്നതിന്  സഹായകരമാംവിധം ഒരു സംവിധാനം രൂപപ്പെടുത്തുന്നതിൽ സെഗ്മെന്റേഷന്റെ കാര്യക്ഷമത സുപ്രധാനമാണ് . ഒരു ചിത്രത്തിൽ നിന്നും നിഴലുകളെയും (shadows), പ്രതിഫലനങ്ങളെയും (reflections) കൃത്യമായി വേർതിരിച്ചെടുക്കുവാൻ നിലവിലുള്ള സംവിധാനങ്ങൾ പര്യാപ്തമല്ല. മാത്രവുമല്ല അതിനു വേണ്ടി വരുന്ന സമയദൈര്‍ഘ്യവും വളരെ കൂടുതലാണ്. ഒരു ചിത്രത്തിന്റെ പശ്ചാത്തലത്തിൽ (background) നിന്നും പൂർവ്വതലം(foreground) വേർതിരിച്ചെടുക്കുന്ന പുതുമയേറിയ ഒരു അണ്‍സൂപ്പർവൈസ്ഡ്  (unsupervised) സമ്പ്രദായം ആണ് ഈ ലേഖനത്തില്‍ പ്രതിപാദിച്ചിരിക്കുന്നത്. നിഴലുകള്‍, പ്രതിഫലനങ്ങള്‍ തുടങ്ങി  ആവശ്യമില്ലാത്ത ഘടകങ്ങളെ പൂർണ്ണമായി  നീക്കം ചെയ്യുവാൻ ഈ രീതിയിലൂടെ സാധിക്കുന്നു. ഇതില്‍ ഉപയോഗപ്പെടുത്തിയിട്ടുള്ള അഡാപ്റ്റീവ് ത്രെഷോൾഡിങ് (Adaptive Thresholding),  ഡൗൺസാംപ്ലിങ്  (Downsampling), മോർഫോളജിക്കൽ പ്രക്രിയകള്‍ (Morphological Operations) തുടങ്ങിയവ സങ്കലന സങ്കീര്‍ണ്ണത (Computational Complexity) കുറയ്ക്കുവാൻ സഹായകരമായി. അതിനാൽ ഈ രീതി ഉപയോഗപ്പെടുത്തിക്കൊണ്ട് അനേകം ഹൈ-റെസൊല്യൂഷന്‍ (high-resolution) ചിത്രങ്ങളെ ചുരുങ്ങിയ സമയം കൊണ്ട് സെഗ്മെൻറ് ചെയ്യുവാനും സാധിക്കുന്നു.

 


ലേഖനത്തിന്റെ പൂർണരൂപം:

PDF

അവലംബങ്ങള്‍


S. Niyas, P. Reshma, Sabu M. Thampi: “A Color Image Segmentation Scheme for Extracting Foreground from Images with Unconstrained Lighting Conditions” Springer International Publishing: Intelligent Systems Technologies and Applications 2016, pp 3-19, DOI:10.1007/978-3-319-47952-1_1

R. C. Gonzalez, et al.: Digital Image Processing. 3rd edition, Prentice Hall, ISBN 9780131687288, 2008.

C. Wang and B. Yang.: An unsupervised object-level image segmentation method based on foreground and background priors, 2016 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Santa Fe, NM, 2016, pp. 141-144.

Xiaomu Song and Guoliang Fan.: A study of supervised, semi-supervised and unsupervised multiscale Bayesian image segmentation. Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, 2002, pp. II-371-II-374 vol.2.

R. Thendral, A. Suhasini and N. Senthil.: A comparative analysis of edge and color based segmentation for orange fruit recognition.Communications and Signal Processing (ICCSP), 2014 International Conference on, Melmaruvathur, 2014, pp. 463-466

Z. Ren, S. Gao, L. T. Chia and I. W. H. Tsang.: Region-Based Saliency Detection and Its Application in Object Recognition.IEEE Transactions on Circuits and Systems for Video Technology,May 2014 vol. 24, no. 5, pp. 769-779,

Ashraf A. Aly1, Safaai Bin Deris2, Nazar Zaki3.: Research Review for Digital Image Segmentation techniquesInternational Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 5, Oct 2011

Arti Taneja; Priya Ranjan; Amit Ujjlayan.: A performance study of image segmentation techniques Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 4th International Conference, 2015

Md. Imrul Jubair, M. M. Rahman, S. Ashfaqueuddin and I. Masud Ziko.: An enhanced decision based adaptive median filtering technique to remove Salt and Pepper noise in digital images. Computer and Information Technology (ICCIT), 2011 14th International Conference on, Dhaka, 2011, pp. 428-433.

Liang Chen, Lei Guo and Ning Yang Yaqin Du.: Multi-level image thresholding. based on histogram voting. 2nd International Congress on Image and Signal Processing, CISP ’09., Tianjin, 2009

Kass M,Witkin A,Terzopoulos D.: Snake:active contour models. Proc.Of 1st Intern Conf on Computer Vision, London,1987,321~331

G. Wan, X. Huang and M. Wang.: An Improved Active Contours Model Based on Morphology for Image Segmentation. Image and Signal Processing, 2009. CISP '09. 2nd International Congress on, Tianjin, 2009, pp. 1-5

B. Wu and Y. Yang.: Local-and global-statistics-based active contour model for image segmentation. Mathematical Problems in Engineering, vol. 201

Thyagarajan, H. Bohlmann and H. Abut.: Image coding based on segmentation using region growing. Acoustics, Speech, and Signal Processing. IEEE International Conference on ICASSP '87., 1987, pp. 752-755

Jun Tang.: A color image segmentation algorithm based on region growing. Computer Engineering and Technology (ICCET), 2010 2nd International Conference on, Chengdu, 2010, pp. V6-634-V6-637

X. Yu and J. Yla-Jaaski.: A new algorithm for image segmentation based on region growing and edge detection. Circuits and Systems, 1991., IEEE International Sympoisum on, 1991, pp. 516-519 vol.1

Ahlem Melouah.: Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique. Computer Science and Its Applications, Volume 456 of the series IFIP Advances in Information and Communication Technology. pp 119-128

S. Mukherjee and S. T. Acton.: Region Based Segmentation in Presence of Intensity Inhomogeneity Using Legendre Polynomials. IEEE Signal Processing Letters, vol. 22, no. 3, March 2015, pp. 298-302

P. K. Jain and S. Susan.: An adaptive single seed based region growing algorithm for color image segmentation. 2013 Annual IEEE India Conference (INDICON), Mumbai, 2013, pp. 1-6.

D H Al Saeed, A. Bouridane, A. ElZaart, and R. Sammouda.: Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models. Information Technology and e-Services (ICITeS), 2012 International Conference on, Sousse, 2012, pp. 1-5.

Q. Chen, L. Zhao, J. Lu, G. Kuang, N. Wang and Y. Jiang.: Modified two-dimensional Otsu image segmentation algorithm and fast realization. IET Image Processing, vol. 6, no. 4, , June 2012, pp. 426-433

C. Zhou, L. Tian, H. Zhao and K. Zhao.: A method of Two-Dimensional Otsu image threshold segmentation based on improved Firefly Algorithm. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015 IEEE International Conference on, Shenyang, 2015, pp. 1420-1424.

Serge Beucher and Christian Lantuéj.: Uses of watersheds in contour detection. Workshop on image processing, real-time edge and motion detection/estimation, Rennes, France (1979)

L Vincent and P Soille.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, Jun 1991, pp. 583-598

Serge Beucher and Fernand Meyer.: The morphological approach to segmentation: the watershed transformation. Mathematical Morphology in Image Processing (Ed. E. R. Dougherty), pages 433–481 (1993).

Norberto Malpica, Juan E Ortufio, Andres Santos.: A multichannel watershed-based algorithm for supervised texture segmentation. Pattern Recognition Letters, 2003, 24 (9-10): 1545-1554

M. H. Rahman and M. R. Islam.: Segmentation of color image using adaptive thresholding and masking with watershed algorithm. Informatics, Electronics & Vision (ICIEV), 2013 International Conference on, Dhaka, 2013, pp. 1-6

A. Shiji and N. Hamada: Color image segmentation method using watershed algorithm and contour information. Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, Kobe, 1999, pp. 305-309 vol.4

G. M. Zhang, M. M. Zhou, J. Chu and J. Miao.: Labeling watershed algorithm based on morphological reconstruction in color space. Haptic Audio Visual Environments and Games (HAVE), 2011 IEEE International Workshop on, Hebei, 2011, pp. 51-55

Qinghua Ji and Ronggang Shi.: A novel method of image segmentation using watershed transformation. Computer Science and Network Technology (ICCSNT), 2011 International Conference on, Harbin, 2011, pp. 1590-1594

B. Han.: Watershed Segmentation Algorithm Based on Morphological Gradient Reconstruction. Information Science and Control Engineering (ICISCE), 2015 2nd International Conference on, Shanghai, 2015, pp. 533-536

Y. Chen and J. Chen.: A watershed segmentation algorithm based on ridge detection and rapid region merging. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on, Guilin, 2014, pp. 420-424.

S. Chebbout and H. F. Merouani.: Comparative Study of Clustering Based Colour Image Segmentation Techniques. Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference on, Naples, 2012, pp. 839-844.

J. Xie and S. Jiang.: A Simple and Fast Algorithm for Global K-means Clustering. Education Technology and Computer Science (ETCS), 2010 Second International Workshop on, Wuhan, 2010, pp. 36-40

S. Vij, S. Sharma and C. Marwaha.: Performance evaluation of color image segmentation using K means clustering and watershed technique. Computing, Communications and Networking Technologies (ICCCNT), 2013. Fourth International Conference on, Tiruchengode, 2013, pp. 1-4

N. A. Mat Isa, S. A. Salamah and U. K. Ngah.: Adaptive fuzzy moving K-means clustering algorithm for image segmentation. in IEEE Transactions on Consumer Electronics, vol. 55, no. 4, November 2009, pp. 2145-2153

Hui Xiong, Junjie Wu.: Kmeans Clustering versus Validation Measures: A Data Distribution Perspective, 2006

C. Y. Lien, C. C. Huang, P. Y. Chen and Y. F. Lin, "An Efficient Denoising Architecture for Removal of Impulse Noise in Images," in IEEE Transactions on Computers, vol. 62, no. 4, pp. 631-643, April 2013.

R. Bernstein.: Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Transactions on Circuits and Systems, vol. 34, no. 11, Nov 1987, pp. 1275-1291

Weibo Yu, Yanhui, Liming Zheng, Keping Liu.: Research of Improved Adaptive Median Filter Algorithm. Proceedings of the 2015 International Conference on Electrical and Information Technologies for Rail Transportation Volume 378 of the series Lecture Notes in Electrical Engineering. pp 27-34

K. Manglem Singh and P. K. Bora.: Adaptive vector median filter for removal impulses from color images. Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, 2003, pp. II-396-II-399 vol.2

J. Pont-Tuset and F. Marques.: Supervised Evaluation of Image Segmentation and Object Proposal Techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 7, July 1 2016, pp. 1465-1478

T. C. W. Landgrebe, P. Paclik and R. P. W. Duin.: Precision-recall operating characteristic (P-ROC) curves in imprecise environments.18th International Conference on Pattern Recognition (ICPR'06), Hong Kong, 2006, pp. 123-127.

J. Canny.: Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, Nov. 1986, pp. 679-698


##plugins.generic.referral.referrals##

  • ##plugins.generic.referral.all.empty##


ശാസ്ത്രദർശിനി © 2016